Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection (1906.11366v1)

Published 26 Jun 2019 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We study two problems in high-dimensional robust statistics: \emph{robust mean estimation} and \emph{outlier detection}. In robust mean estimation the goal is to estimate the mean $\mu$ of a distribution on $\mathbb{R}d$ given $n$ independent samples, an $\varepsilon$-fraction of which have been corrupted by a malicious adversary. In outlier detection the goal is to assign an \emph{outlier score} to each element of a data set such that elements more likely to be outliers are assigned higher scores. Our algorithms for both problems are based on a new outlier scoring method we call QUE-scoring based on \emph{quantum entropy regularization}. For robust mean estimation, this yields the first algorithm with optimal error rates and nearly-linear running time $\widetilde{O}(nd)$ in all parameters, improving on the previous fastest running time $\widetilde{O}(\min(nd/\varepsilon6, nd2))$. For outlier detection, we evaluate the performance of QUE-scoring via extensive experiments on synthetic and real data, and demonstrate that it often performs better than previously proposed algorithms. Code for these experiments is available at https://github.com/twistedcubic/que-outlier-detection .

Citations (96)

Summary

We haven't generated a summary for this paper yet.