Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonicalizing Knowledge Base Literals (1906.11180v1)

Published 26 Jun 2019 in cs.AI and cs.CL

Abstract: Ontology-based knowledge bases (KBs) like DBpedia are very valuable resources, but their usefulness and usability is limited by various quality issues. One such issue is the use of string literals instead of semantically typed entities. In this paper we study the automated canonicalization of such literals, i.e., replacing the literal with an existing entity from the KB or with a new entity that is typed using classes from the KB. We propose a framework that combines both reasoning and machine learning in order to predict the relevant entities and types, and we evaluate this framework against state-of-the-art baselines for both semantic typing and entity matching.

Citations (8)

Summary

We haven't generated a summary for this paper yet.