Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparison of apartment rent price prediction using a large dataset: Kriging versus DNN (1906.11099v1)

Published 25 Jun 2019 in stat.AP, cs.LG, and stat.ML

Abstract: The hedonic approach based on a regression model has been widely adopted for the prediction of real estate property price and rent. In particular, a spatial regression technique called Kriging, a method of interpolation that was advanced in the field of spatial statistics, are known to enable high accuracy prediction in light of the spatial dependence of real estate property data. Meanwhile, there has been a rapid increase in machine learning-based prediction using a large (big) dataset and its effectiveness has been demonstrated in previous studies. However, no studies have ever shown the extent to which predictive accuracy differs for Kriging and machine learning techniques using big data. Thus, this study compares the predictive accuracy of apartment rent price in Japan between the nearest neighbor Gaussian processes (NNGP) model, which enables application of Kriging to big data, and the deep neural network (DNN), a representative machine learning technique, with a particular focus on the data sample size (n = 104, 105, 106) and differences in predictive performance. Our analysis showed that, with an increase in sample size, the out-of-sample predictive accuracy of DNN approached that of NNGP and they were nearly equal on the order of n = 106. Furthermore, it is suggested that, for both higher and lower end properties whose rent price deviates from the median, DNN may have a higher predictive accuracy than that of NNGP.

Citations (1)

Summary

We haven't generated a summary for this paper yet.