Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Is it Easier to Prove Theorems that are Guaranteed to be True? (1906.10837v2)

Published 26 Jun 2019 in cs.CC

Abstract: Consider the following two fundamental open problems in complexity theory: (a) Does a hard-on-average language in NP imply the existence of one-way functions?, or (b) Does a hard-on-average language in NP imply a hard-on-average problem in TFNP (i.e., the class of total NP search problem)? Our main result is that the answer to (at least) one of these questions is yes. Both one-way functions and problems in TFNP can be interpreted as promise-true distributional NP search problems---namely, distributional search problems where the sampler only samples true statements. As a direct corollary of the above result, we thus get that the existence of a hard-on-average distributional NP search problem implies a hard-on-average promise-true distributional NP search problem. In other words, "It is no easier to find witnesses (a.k.a. proofs) for efficiently-sampled statements (theorems) that are guaranteed to be true." This result follows from a more general study of interactive puzzles---a generalization of average-case hardness in NP---and in particular, a novel round-collapse theorem for computationally-sound protocols, analogous to Babai-Moran's celebrated round-collapse theorem for information-theoretically sound protocols. As another consequence of this treatment, we show that the existence of O(1)-round public-coin non-trivial arguments (i.e., argument systems that are not proofs) imply the existence of a hard-on-average problem in NP/poly.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.