Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certifiably Optimal Sparse Inverse Covariance Estimation (1906.10283v1)

Published 25 Jun 2019 in stat.ML, cs.LG, and math.OC

Abstract: We consider the maximum likelihood estimation of sparse inverse covariance matrices. We demonstrate that current heuristic approaches primarily encourage robustness, instead of the desired sparsity. We give a novel approach that solves the cardinality constrained likelihood problem to certifiable optimality. The approach uses techniques from mixed-integer optimization and convex optimization, and provides a high-quality solution with a guarantee on its suboptimality, even if the algorithm is terminated early. Using a variety of synthetic and real datasets, we demonstrate that our approach can solve problems where the dimension of the inverse covariance matrix is up to 1,000s. We also demonstrate that our approach produces significantly sparser solutions than Glasso and other popular learning procedures, makes less false discoveries, while still maintaining state-of-the-art accuracy.

Citations (12)

Summary

We haven't generated a summary for this paper yet.