Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-Independent PAC Learning of Halfspaces with Massart Noise (1906.10075v2)

Published 24 Jun 2019 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the problem of {\em distribution-independent} PAC learning of halfspaces in the presence of Massart noise. Specifically, we are given a set of labeled examples $(\mathbf{x}, y)$ drawn from a distribution $\mathcal{D}$ on $\mathbb{R}{d+1}$ such that the marginal distribution on the unlabeled points $\mathbf{x}$ is arbitrary and the labels $y$ are generated by an unknown halfspace corrupted with Massart noise at noise rate $\eta<1/2$. The goal is to find a hypothesis $h$ that minimizes the misclassification error $\mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}} \left[ h(\mathbf{x}) \neq y \right]$. We give a $\mathrm{poly}\left(d, 1/\epsilon \right)$ time algorithm for this problem with misclassification error $\eta+\epsilon$. We also provide evidence that improving on the error guarantee of our algorithm might be computationally hard. Prior to our work, no efficient weak (distribution-independent) learner was known in this model, even for the class of disjunctions. The existence of such an algorithm for halfspaces (or even disjunctions) has been posed as an open question in various works, starting with Sloan (1988), Cohen (1997), and was most recently highlighted in Avrim Blum's FOCS 2003 tutorial.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ilias Diakonikolas (161 papers)
  2. Themis Gouleakis (25 papers)
  3. Christos Tzamos (70 papers)
Citations (79)

Summary

We haven't generated a summary for this paper yet.