Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Inference for multiple heterogeneous networks with a common invariant subspace (1906.10026v4)

Published 24 Jun 2019 in stat.ME, cs.SI, math.ST, and stat.TH

Abstract: The development of models for multiple heterogeneous network data is of critical importance both in statistical network theory and across multiple application domains. Although single-graph inference is well-studied, multiple graph inference is largely unexplored, in part because of the challenges inherent in appropriately modeling graph differences and yet retaining sufficient model simplicity to render estimation feasible. This paper addresses exactly this gap, by introducing a new model, the common subspace independent-edge (COSIE) multiple random graph model, which describes a heterogeneous collection of networks with a shared latent structure on the vertices but potentially different connectivity patterns for each graph. The COSIE model encompasses many popular network representations, including the stochastic blockmodel. The model is both flexible enough to meaningfully account for important graph differences and tractable enough to allow for accurate inference in multiple networks. In particular, a joint spectral embedding of adjacency matrices - the multiple adjacency spectral embedding (MASE) - leads, in a COSIE model, to simultaneous consistent estimation of underlying parameters for each graph. Under mild additional assumptions, MASE estimates satisfy asymptotic normality and yield improvements for graph eigenvalue estimation and hypothesis testing. In both simulated and real data, the COSIE model and the MASE embedding can be deployed for a number of subsequent network inference tasks, including dimensionality reduction, classification, hypothesis testing and community detection. Specifically, when MASE is applied to a dataset of connectomes constructed through diffusion magnetic resonance imaging, the result is an accurate classification of brain scans by patient and a meaningful determination of heterogeneity across scans of different subjects.

Citations (110)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.