Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Optimization of Generative Image Modeling using Sequential Subspace Search and Content-based Guidance (1906.09840v3)

Published 24 Jun 2019 in cs.GR, cs.CV, cs.HC, and cs.LG

Abstract: Generative image modeling techniques such as GAN demonstrate highly convincing image generation result. However, user interaction is often necessary to obtain the desired results. Existing attempts add interactivity but require either tailored architectures or extra data. We present a human-in-the-optimization method that allows users to directly explore and search the latent vector space of generative image modeling. Our system provides multiple candidates by sampling the latent vector space, and the user selects the best blending weights within the subspace using multiple sliders. In addition, the user can express their intention through image editing tools. The system samples latent vectors based on inputs and presents new candidates to the user iteratively. An advantage of our formulation is that one can apply our method to arbitrary pre-trained model without developing specialized architecture or data. We demonstrate our method with various generative image modeling applications, and show superior performance in a comparative user study with prior art iGAN.

Citations (4)

Summary

We haven't generated a summary for this paper yet.