Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Calibration for Convolutional Neural Networks Using Structured Dropout (1906.09551v1)

Published 23 Jun 2019 in cs.LG, cs.CV, and stat.ML

Abstract: In classification applications, we often want probabilistic predictions to reflect confidence or uncertainty. Dropout, a commonly used training technique, has recently been linked to Bayesian inference, yielding an efficient way to quantify uncertainty in neural network models. However, as previously demonstrated, confidence estimates computed with a naive implementation of dropout can be poorly calibrated, particularly when using convolutional networks. In this paper, through the lens of ensemble learning, we associate calibration error with the correlation between the models sampled with dropout. Motivated by this, we explore the use of structured dropout to promote model diversity and improve confidence calibration. We use the SVHN, CIFAR-10 and CIFAR-100 datasets to empirically compare model diversity and confidence errors obtained using various dropout techniques. We also show the merit of structured dropout in a Bayesian active learning application.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com