Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Waveform-Based Acoustic Models using Deep Variational Convolutional Neural Networks (1906.09526v4)

Published 23 Jun 2019 in stat.ML and cs.LG

Abstract: We investigate the potential of stochastic neural networks for learning effective waveform-based acoustic models. The waveform-based setting, inherent to fully end-to-end speech recognition systems, is motivated by several comparative studies of automatic and human speech recognition that associate standard non-adaptive feature extraction techniques with information loss which can adversely affect robustness. Stochastic neural networks, on the other hand, are a class of models capable of incorporating rich regularization mechanisms into the learning process. We consider a deep convolutional neural network that first decomposes speech into frequency sub-bands via an adaptive parametric convolutional block where filters are specified by cosine modulations of compactly supported windows. The network then employs standard non-parametric 1D convolutions to extract relevant spectro-temporal patterns while gradually compressing the structured high dimensional representation generated by the parametric block. We rely on a probabilistic parametrization of the proposed neural architecture and learn the model using stochastic variational inference. This requires evaluation of an analytically intractable integral defining the Kullback-Leibler divergence term responsible for regularization, for which we propose an effective approximation based on the Gauss-Hermite quadrature. Our empirical results demonstrate a superior performance of the proposed approach over comparable waveform-based baselines and indicate that it could lead to robustness. Moreover, the approach outperforms a recently proposed deep convolutional neural network for learning of robust acoustic models with standard FBANK features.

Citations (7)

Summary

We haven't generated a summary for this paper yet.