Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-regularity integrators for nonlinear Dirac equations (1906.09413v1)

Published 22 Jun 2019 in math.NA and cs.NA

Abstract: In this work, we consider the numerical integration of the nonlinear Dirac equation and the Dirac-Poisson system (NDEs) under rough initial data. We propose a ultra low-regularity integrator (ULI) for solving the NDEs which enables optimal first-order time convergence in $Hr$ for solutions in $H{r}$, i.e., without requiring any additional regularity on the solution. In contrast to classical methods, ULI overcomes the numerical loss of derivatives and is therefore more efficient and accurate for approximating low regular solutions. Convergence theorems and the extension of ULI to second order are established. Numerical experiments confirm the theoretical results and underline the favourable error behaviour of the new method at low regularity compared to classical integration schemes.

Citations (32)

Summary

We haven't generated a summary for this paper yet.