Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Longer-term Dependencies via Grouped Distributor Unit (1906.08856v1)

Published 29 Apr 2019 in cs.NE, cs.LG, and stat.ML

Abstract: Learning long-term dependencies still remains difficult for recurrent neural networks (RNNs) despite their success in sequence modeling recently. In this paper, we propose a novel gated RNN structure, which contains only one gate. Hidden states in the proposed grouped distributor unit (GDU) are partitioned into groups. For each group, the proportion of memory to be overwritten in each state transition is limited to a constant and is adaptively distributed to each group member. In other word, every separate group has a fixed overall update rate, yet all units are allowed to have different paces. Information is therefore forced to be latched in a flexible way, which helps the model to capture long-term dependencies in data. Besides having a simpler structure, GDU is demonstrated experimentally to outperform LSTM and GRU on tasks including both pathological problems and natural data set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.