Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic Guarantees for Inverse Imaging with Untrained Network Priors (1906.08763v2)

Published 20 Jun 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Deep neural networks as image priors have been recently introduced for problems such as denoising, super-resolution and inpainting with promising performance gains over hand-crafted image priors such as sparsity and low-rank. Unlike learned generative priors they do not require any training over large datasets. However, few theoretical guarantees exist in the scope of using untrained neural network priors for inverse imaging problems. We explore new applications and theory for untrained neural network priors. Specifically, we consider the problem of solving linear inverse problems, such as compressive sensing, as well as non-linear problems, such as compressive phase retrieval. We model images to lie in the range of an untrained deep generative network with a fixed seed. We further present a projected gradient descent scheme that can be used for both compressive sensing and phase retrieval and provide rigorous theoretical guarantees for its convergence. We also show both theoretically as well as empirically that with deep network priors, one can achieve better compression rates for the same image quality compared to hand crafted priors.

Citations (69)

Summary

We haven't generated a summary for this paper yet.