Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibrated Model-Based Deep Reinforcement Learning (1906.08312v1)

Published 19 Jun 2019 in cs.LG and stat.ML

Abstract: Estimates of predictive uncertainty are important for accurate model-based planning and reinforcement learning. However, predictive uncertainties---especially ones derived from modern deep learning systems---can be inaccurate and impose a bottleneck on performance. This paper explores which uncertainties are needed for model-based reinforcement learning and argues that good uncertainties must be calibrated, i.e. their probabilities should match empirical frequencies of predicted events. We describe a simple way to augment any model-based reinforcement learning agent with a calibrated model and show that doing so consistently improves planning, sample complexity, and exploration. On the \textsc{HalfCheetah} MuJoCo task, our system achieves state-of-the-art performance using 50\% fewer samples than the current leading approach. Our findings suggest that calibration can improve the performance of model-based reinforcement learning with minimal computational and implementation overhead.

Citations (53)

Summary

We haven't generated a summary for this paper yet.