Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Stein Discrepancy Estimators (1906.08283v3)

Published 19 Jun 2019 in math.ST, cs.LG, stat.ME, stat.ML, and stat.TH

Abstract: When maximum likelihood estimation is infeasible, one often turns to score matching, contrastive divergence, or minimum probability flow to obtain tractable parameter estimates. We provide a unifying perspective of these techniques as minimum Stein discrepancy estimators, and use this lens to design new diffusion kernel Stein discrepancy (DKSD) and diffusion score matching (DSM) estimators with complementary strengths. We establish the consistency, asymptotic normality, and robustness of DKSD and DSM estimators, then derive stochastic Riemannian gradient descent algorithms for their efficient optimisation. The main strength of our methodology is its flexibility, which allows us to design estimators with desirable properties for specific models at hand by carefully selecting a Stein discrepancy. We illustrate this advantage for several challenging problems for score matching, such as non-smooth, heavy-tailed or light-tailed densities.

Citations (86)

Summary

We haven't generated a summary for this paper yet.