Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Restricted Kernel Machines: A Framework for Multi-view Generation and Disentangled Feature Learning (1906.08144v7)

Published 19 Jun 2019 in cs.LG and stat.ML

Abstract: This paper introduces a novel framework for generative models based on Restricted Kernel Machines (RKMs) with joint multi-view generation and uncorrelated feature learning, called Gen-RKM. To enable joint multi-view generation, this mechanism uses a shared representation of data from various views. Furthermore, the model has a primal and dual formulation to incorporate both kernel-based and (deep convolutional) neural network based models within the same setting. When using neural networks as explicit feature-maps, a novel training procedure is proposed, which jointly learns the features and shared subspace representation. The latent variables are given by the eigen-decomposition of the kernel matrix, where the mutual orthogonality of eigenvectors represents the learned uncorrelated features. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of generated samples on various standard datasets.

Citations (13)

Summary

We haven't generated a summary for this paper yet.