Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Differentiability of the speed of biased random walks on Galton-Watson trees (1906.07913v2)

Published 19 Jun 2019 in math.PR

Abstract: We prove that the speed of a $\lambda$-biased random walk on a supercritical Galton-Watson tree is differentiable for $\lambda$ such that the walk is ballistic and obeys a central limit theorem, and give an expression of the derivative using a certain $2$-dimensional Gaussian random variable. The proof heavily uses the renewal structure of Galton-Watson trees that was introduced by Lyons-Pemantle-Peres.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.