Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating a Manifold from a Tangent Bundle Learner (1906.07661v1)

Published 18 Jun 2019 in cs.LG and stat.ML

Abstract: Manifold hypotheses are typically used for tasks such as dimensionality reduction, interpolation, or improving classification performance. In the less common problem of manifold estimation, the task is to characterize the geometric structure of the manifold in the original ambient space from a sample. We focus on the role that tangent bundle learners (TBL) can play in estimating the underlying manifold from which data is assumed to be sampled. Since the unbounded tangent spaces natively represent a poor manifold estimate, the problem reduces to one of estimating regions in the tangent space where it acts as a relatively faithful linear approximator to the surface of the manifold. Local PCA methods, such as the Mixtures of Probabilistic Principal Component Analyzers method of Tipping and Bishop produce a subset of the tangent bundle of the manifold along with an assignment function that assigns points in the training data used by the TBL to elements of the estimated tangent bundle. We formulate three methods that use the data assigned to each tangent space to estimate the underlying bounded subspaces for which the tangent space is a faithful estimate of the manifold and offer thoughts on how this perspective is theoretically grounded in the manifold assumption. We seek to explore the conceptual and technical challenges that arise in trying to utilize simple TBL methods to arrive at reliable estimates of the underlying manifold.

Summary

We haven't generated a summary for this paper yet.