Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy-As-Clean: Learning Self-supervised Denoising from the Corrupted Image (1906.06878v4)

Published 17 Jun 2019 in cs.CV and eess.IV

Abstract: Supervised deep networks have achieved promisingperformance on image denoising, by learning image priors andnoise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised andunsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second and similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jun Xu (398 papers)
  2. Yuan Huang (85 papers)
  3. Ming-Ming Cheng (185 papers)
  4. Li Liu (311 papers)
  5. Fan Zhu (44 papers)
  6. Zhou Xu (16 papers)
  7. Ling Shao (244 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.