Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Clark-Ocone type formula via Ito calculus and its application to finance

Published 16 Jun 2019 in q-fin.MF and math.PR | (1906.06648v1)

Abstract: An explicit martingale representation for random variables described as a functional of a Levy process will be given. The Clark-Ocone theorem shows that integrands appeared in a martingale representation are given by conditional expectations of Malliavin derivatives. Our goal is to extend it to random variables which are not Malliavin differentiable. To this end, we make use of Ito's formula, instead of Malliavin calculus. As an application to mathematical finance, we shall give an explicit representation of locally risk-minimizing strategy of digital options for exponential Levy models. Since the payoff of digital options is described by an indicator function, we also discuss the Malliavin differentiability of indicator functions with respect to Levy processes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.