Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Detection of Long Term Evaluation Criteria in Online Controlled Experiments (1906.05959v1)

Published 13 Jun 2019 in stat.AP and cs.AI

Abstract: A common dilemma encountered by many upon implementing an optimization method or experiment, whether it be a reinforcement learning algorithm, or A/B testing, is deciding on what metric to optimize for. Very often short-term metrics, which are easier to measure are chosen over long term metrics which have undesirable time considerations and often a more complex calculation. In this paper, we argue the importance of choosing a metrics that focuses on long term effects. With this comes the necessity in the ability to measure significant differences between groups relatively early. We present here an efficient methodology for early detection of lifetime differences between groups based on bootstrap hypothesis testing of the lifetime forecast of the response. We present an application of this method in the domain of online advertising and we argue that approach not only allows one to focus on the ultimate metric of importance but also provides a means of accelerating the testing period.

Summary

We haven't generated a summary for this paper yet.