Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient calibration for high-dimensional computer model output using basis methods (1906.05758v1)

Published 13 Jun 2019 in stat.ME

Abstract: Calibration of expensive computer models with high-dimensional output fields can be approached via history matching. If the entire output field is matched, with patterns or correlations between locations or time points represented, calculating the distance metric between observational data and model output for a single input setting requires a time intensive inversion of a high-dimensional matrix. By using a low-dimensional basis representation rather than emulating each output individually, we define a metric in the reduced space that allows the implausibility for the field to be calculated efficiently, with only small matrix inversions required, using projection that is consistent with the variance specifications in the implausibility. We show that projection using the $L_2$ norm can result in different conclusions, with the ordering of points not maintained on the basis, with implications for both history matching and probabilistic methods. We demonstrate the scalability of our method through history matching of the Canadian atmosphere model, CanAM4, comparing basis methods to emulation of each output individually, showing that the basis approach can be more accurate, whilst also being more efficient.

Summary

We haven't generated a summary for this paper yet.