Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On discrete idempotent paths (1906.05590v1)

Published 13 Jun 2019 in math.LO, cs.LO, and math.CO

Abstract: The set of discrete lattice paths from (0, 0) to (n, n) with North and East steps (i.e. words w $\in$ { x, y } * such that |w| x = |w| y = n) has a canonical monoid structure inherited from the bijection with the set of join-continuous maps from the chain { 0, 1,. .. , n } to itself. We explicitly describe this monoid structure and, relying on a general characterization of idempotent join-continuous maps from a complete lattice to itself, we characterize idempotent paths as upper zigzag paths. We argue that these paths are counted by the odd Fibonacci numbers. Our method yields a geometric/combinatorial proof of counting results, due to Howie and to Laradji and Umar, for idempotents in monoids of monotone endomaps on finite chains.

Citations (10)

Summary

We haven't generated a summary for this paper yet.