Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditioning of Reinforcement Learning Agents and its Policy Regularization Application (1906.05437v2)

Published 13 Jun 2019 in cs.LG and stat.ML

Abstract: The outcome of Jacobian singular values regularization was studied for supervised learning problems. It also was shown that Jacobian conditioning regularization can help to avoid the ``mode-collapse'' problem in Generative Adversarial Networks. In this paper, we try to answer the following question: Can information about policy conditioning help to shape a more stable and general policy of reinforcement learning agents? To answer this question, we conduct a study of Jacobian conditioning behavior during policy optimization. To the best of our knowledge, this is the first work that research condition number in reinforcement learning agents. We propose a conditioning regularization algorithm and test its performance on the range of continuous control tasks. Finally, we compare algorithms on the CoinRun environment with separated train end test levels to analyze how conditioning regularization contributes to agents' generalization.

Summary

We haven't generated a summary for this paper yet.