Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Matrix Mittag--Leffler distributions and modeling heavy-tailed risks (1906.05316v2)

Published 12 Jun 2019 in math.ST, math.PR, and stat.TH

Abstract: In this paper we define the class of matrix Mittag-Leffler distributions and study some of its properties. We show that it can be interpreted as a particular case of an inhomogeneous phase-type distribution with random scaling factor, and alternatively also as the absorption time of a semi-Markov process with Mittag-Leffler distributed interarrival times. We then identify this class and its power transforms as a remarkably parsimonious and versatile family for the modelling of heavy-tailed risks, which overcomes some disadvantages of other approaches like the problem of threshold selection in extreme value theory. We illustrate this point both on simulated data as well as on a set of real-life MTPL insurance data that were modeled differently in the past.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.