Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous network approach to predict individuals' mental health (1906.04346v2)

Published 11 Jun 2019 in cs.SI, cs.LG, and stat.ML

Abstract: Depression and anxiety are critical public health issues affecting millions of people around the world. To identify individuals who are vulnerable to depression and anxiety, predictive models have been built that typically utilize data from one source. Unlike these traditional models, in this study, we leverage a rich heterogeneous data set from the University of Notre Dame's NetHealth study that collected individuals' (student participants') social interaction data via smartphones, health-related behavioral data via wearables (Fitbit), and trait data from surveys. To integrate the different types of information, we model the NetHealth data as a heterogeneous information network (HIN). Then, we redefine the problem of predicting individuals' mental health conditions (depression or anxiety) in a novel manner, as applying to our HIN a popular paradigm of a recommender system (RS), which is typically used to predict the preference that a person would give to an item (e.g., a movie or book). In our case, the items are the individuals' different mental health states. We evaluate four state-of-the-art RS approaches. Also, we model the prediction of individuals' mental health as another problem type - that of node classification (NC) in our HIN, evaluating in the process four node features under logistic regression as a proof-of-concept classifier. We find that our RS and NC network methods produce more accurate predictions than a logistic regression model using the same NetHealth data in the traditional non-network fashion as well as a random-approach. Also, we find that the best of the considered RS approaches outperforms all considered NC approaches. This is the first study to integrate smartphone, wearable sensor, and survey data in an HIN manner and use RS or NC on the HIN to predict individuals' mental health conditions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Shikang Liu (5 papers)
  2. Fatemeh Vahedian (5 papers)
  3. David Hachen (7 papers)
  4. Omar Lizardo (15 papers)
  5. Christian Poellabauer (19 papers)
  6. Aaron Striegel (12 papers)
  7. Tijana Milenkovic (21 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.