Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptively Preconditioned Stochastic Gradient Langevin Dynamics (1906.04324v2)

Published 10 Jun 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Stochastic Gradient Langevin Dynamics infuses isotropic gradient noise to SGD to help navigate pathological curvature in the loss landscape for deep networks. Isotropic nature of the noise leads to poor scaling, and adaptive methods based on higher order curvature information such as Fisher Scoring have been proposed to precondition the noise in order to achieve better convergence. In this paper, we describe an adaptive method to estimate the parameters of the noise and conduct experiments on well-known model architectures to show that the adaptively preconditioned SGLD method achieves convergence with the speed of adaptive first order methods such as Adam, AdaGrad etc. and achieves generalization equivalent of SGD in the test set.

Citations (9)

Summary

We haven't generated a summary for this paper yet.