Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pure entropic regularization for metrical task systems (1906.04270v3)

Published 10 Jun 2019 in cs.DS and math.MG

Abstract: We show that on every $n$-point HST metric, there is a randomized online algorithm for metrical task systems (MTS) that is $1$-competitive for service costs and $O(\log n)$-competitive for movement costs. In general, these refined guarantees are optimal up to the implicit constant. While an $O(\log n)$-competitive algorithm for MTS on HST metrics was developed by Bubeck et al. (SODA 2019), that approach could only establish an $O((\log n)2)$-competitive ratio when the service costs are required to be $O(1)$-competitive. Our algorithm can be viewed as an instantiation of online mirror descent with the regularizer derived from a multiscale conditional entropy. In fact, our algorithm satisfies a set of even more refined guarantees; we are able to exploit this property to combine it with known random embedding theorems and obtain, for any $n$-point metric space, a randomized algorithm that is $1$-competitive for service costs and $O((\log n)2)$-competitive for movement costs.

Citations (20)

Summary

We haven't generated a summary for this paper yet.