Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Formalization of the Axiom of Choice and its Equivalent Theorems (1906.03930v1)

Published 10 Jun 2019 in cs.LO and cs.FL

Abstract: In this paper, we describe the formalization of the axiom of choice and several of its famous equivalent theorems in Morse-Kelley set theory. These theorems include Tukey's lemma, the Hausdorff maximal principle, the maximal principle, Zermelo's postulate, Zorn's lemma and the well-ordering theorem. We prove the above theorems by the axiom of choice in turn, and finally prove the axiom of choice by Zermelo's postulate and the well-ordering theorem, thus completing the cyclic proof of equivalence between them. The proofs are checked formally using the Coq proof assistant in which Morse-Kelley set theory is formalized. The whole process of formal proof demonstrates that the Coq-based machine proving of mathematics theorem is highly reliable and rigorous. The formal work of this paper is enough for most applications, especially in set theory, topology and algebra.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com