Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplacian Spectral Basis Functions (1906.03856v1)

Published 10 Jun 2019 in cs.GR, math.NA, and cs.NA

Abstract: Representing a signal as a linear combination of a set of basis functions is central in a wide range of applications, such as approximation, de-noising, compression, shape correspondence and comparison. In this context, our paper addresses the main aspects of signal approximation, such as the definition, computation, and comparison of basis functions on arbitrary 3D shapes. Focusing on the class of basis functions induced by the Laplace-Beltrami operator and its spectrum, we introduce the diffusion and Laplacian spectral basis functions, which are then compared with the harmonic and Laplacian eigenfunctions. As main properties of these basis functions, which are commonly used for numerical geometry processing and shape analysis, we discuss the partition of the unity and non-negativity; the intrinsic definition and invariance with respect to shape transformations (e.g., translation, rotation, uniform scaling); the locality, smoothness, and orthogonality; the numerical stability with respect to the domain discretisation; the computational cost and storage overhead. Finally, we consider geometric metrics, such as the area, conformal, and kernel-based norms, for the comparison and characterisation of the main properties of the Laplacian basis functions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.