Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novelty Detection via Network Saliency in Visual-based Deep Learning (1906.03685v1)

Published 9 Jun 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Machine-learning driven safety-critical autonomous systems, such as self-driving cars, must be able to detect situations where its trained model is not able to make a trustworthy prediction. Often viewed as a black-box, it is non-obvious to determine when a model will make a safe decision and when it will make an erroneous, perhaps life-threatening one. Prior work on novelty detection deal with highly structured data and do not translate well to dynamic, real-world situations. This paper proposes a multi-step framework for the detection of novel scenarios in vision-based autonomous systems by leveraging information learned by the trained prediction model and a new image similarity metric. We demonstrate the efficacy of this method through experiments on a real-world driving dataset as well as on our in-house indoor racing environment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.