Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus Neural Network for Medical Imaging Denoising with Only Noisy Training Samples (1906.03639v1)

Published 9 Jun 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Deep neural networks have been proved efficient for medical image denoising. Current training methods require both noisy and clean images. However, clean images cannot be acquired for many practical medical applications due to naturally noisy signal, such as dynamic imaging, spectral computed tomography, arterial spin labeling magnetic resonance imaging, etc. In this paper we proposed a training method which learned denoising neural networks from noisy training samples only. Training data in the acquisition domain was split to two subsets and the network was trained to map one noisy set to the other. A consensus loss function was further proposed to efficiently combine the outputs from both subsets. A mathematical proof was provided that the proposed training scheme was equivalent to training with noisy and clean samples when the noise in the two subsets was uncorrelated and zero-mean. The method was validated on Low-dose CT Challenge dataset and NYU MRI dataset and achieved improved performance compared to existing unsupervised methods.

Citations (45)

Summary

We haven't generated a summary for this paper yet.