Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Tight Differential Privacy Guarantees Using FFT (1906.03049v2)

Published 7 Jun 2019 in stat.ML, cs.CR, and cs.LG

Abstract: Differentially private (DP) machine learning has recently become popular. The privacy loss of DP algorithms is commonly reported using $(\varepsilon,\delta)$-DP. In this paper, we propose a numerical accountant for evaluating the privacy loss for algorithms with continuous one dimensional output. This accountant can be applied to the subsampled multidimensional Gaussian mechanism which underlies the popular DP stochastic gradient descent. The proposed method is based on a numerical approximation of an integral formula which gives the exact $(\varepsilon,\delta)$-values. The approximation is carried out by discretising the integral and by evaluating discrete convolutions using the fast Fourier transform algorithm. We give both theoretical error bounds and numerical error estimates for the approximation. Experimental comparisons with state-of-the-art techniques demonstrate significant improvements in bound tightness and/or computation time. Python code for the method can be found in Github (https://github.com/DPBayes/PLD-Accountant/).

Citations (1)

Summary

We haven't generated a summary for this paper yet.