Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoGrow: Automatic Layer Growing in Deep Convolutional Networks (1906.02909v5)

Published 7 Jun 2019 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: Depth is a key component of Deep Neural Networks (DNNs), however, designing depth is heuristic and requires many human efforts. We propose AutoGrow to automate depth discovery in DNNs: starting from a shallow seed architecture, AutoGrow grows new layers if the growth improves the accuracy; otherwise, stops growing and thus discovers the depth. We propose robust growing and stopping policies to generalize to different network architectures and datasets. Our experiments show that by applying the same policy to different network architectures, AutoGrow can always discover near-optimal depth on various datasets of MNIST, FashionMNIST, SVHN, CIFAR10, CIFAR100 and ImageNet. For example, in terms of accuracy-computation trade-off, AutoGrow discovers a better depth combination in ResNets than human experts. Our AutoGrow is efficient. It discovers depth within similar time of training a single DNN. Our code is available at https://github.com/wenwei202/autogrow.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com