Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

A Look at the Effect of Sample Design on Generalization through the Lens of Spectral Analysis (1906.02732v2)

Published 6 Jun 2019 in cs.LG and stat.ML

Abstract: This paper provides a general framework to study the effect of sampling properties of training data on the generalization error of the learned ML models. Specifically, we propose a new spectral analysis of the generalization error, expressed in terms of the power spectra of the sampling pattern and the function involved. The framework is build in the Euclidean space using Fourier analysis and establishes a connection between some high dimensional geometric objects and optimal spectral form of different state-of-the-art sampling patterns. Subsequently, we estimate the expected error bounds and convergence rate of different state-of-the-art sampling patterns, as the number of samples and dimensions increase. We make several observations about generalization error which are valid irrespective of the approximation scheme (or learning architecture) and training (or optimization) algorithms. Our result also sheds light on ways to formulate design principles for constructing optimal sampling methods for particular problems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube