Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry of Positive Solutions for the Fractional Schr$ \ddot{\textrm{o}}$dinger Equations with Choquard-type Nonlinearities (1906.02388v1)

Published 6 Jun 2019 in math.AP

Abstract: This paper deals with the following fractional Schr$ \ddot{\textrm{o}}$dinger equations with Choquard-type nonlinearities \begin{equation*} \left{\begin{array}{r@{\ \ }c@{\ \ }ll} (-\Delta){\frac{\alpha}{2}}u + u - C_{n,-\beta} \,(|x|{\beta-n}\ast u{p})\, u{p-1}& = &0 & \mbox{in}\ \ \mathbb{R}{n}\,, \[0.05cm] u & > & 0 & \mbox{on}\ \ \mathbb{R}{n}, \end{array}\right. \end{equation*} where $ 0< \alpha,\beta < 2, 1\leq p <\infty \,\,and\,\, n\geq 2. $ First we construct a decay result at infinity and a narrow region principle for related equations. Then we establish the radial symmetry of positive solutions for the above equation with the generalized direct method of moving planes.

Summary

We haven't generated a summary for this paper yet.