Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Purpose Incremental Covariance Update and Efficient Belief Space Planning via Factor-Graph Propagation Action Tree (1906.02249v1)

Published 5 Jun 2019 in cs.RO and stat.ML

Abstract: Fast covariance calculation is required both for SLAM (e.g.~in order to solve data association) and for evaluating the information-theoretic term for different candidate actions in belief space planning (BSP). In this paper we make two primary contributions. First, we develop a novel general-purpose incremental covariance update technique, which efficiently recovers specific covariance entries after any change in the inference problem, such as introduction of new observations/variables or re-linearization of the state vector. Our approach is shown to recover them faster than other state-of-the-art methods. Second, we present a computationally efficient approach for BSP in high-dimensional state spaces, leveraging our incremental covariance update method. State of the art BSP approaches perform belief propagation for each candidate action and then evaluate an objective function that typically includes an information-theoretic term, such as entropy or information gain. Yet, candidate actions often have similar parts (e.g. common trajectory parts), which are however evaluated separately for each candidate. Moreover, calculating the information-theoretic term involves a costly determinant computation of the entire information (covariance) matrix which is O(n3) with n being dimension of the state or costly Schur complement operations if only marginal posterior covariance of certain variables is of interest. Our approach, rAMDL-Tree, extends our previous BSP method rAMDL, by exploiting incremental covariance calculation and performing calculation re-use between common parts of non-myopic candidate actions, such that these parts are evaluated only once, in contrast to existing approaches.

Citations (12)

Summary

We haven't generated a summary for this paper yet.