Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlation decay and partition function zeros: Algorithms and phase transitions (1906.01228v6)

Published 4 Jun 2019 in cs.CC, cond-mat.stat-mech, cs.DM, cs.DS, and math.CO

Abstract: We explore connections between the phenomenon of correlation decay and the location of Lee-Yang and Fisher zeros for various spin systems. In particular we show that, in many instances, proofs showing that weak spatial mixing on the Bethe lattice (infinite $\Delta$-regular tree) implies strong spatial mixing on all graphs of maximum degree $\Delta$ can be lifted to the complex plane, establishing the absence of zeros of the associated partition function in a complex neighborhood of the region in parameter space corresponding to strong spatial mixing. This allows us to give unified proofs of several recent results of this kind, including the resolution by Peters and Regts of the Sokal conjecture for the partition function of the hard core lattice gas. It also allows us to prove new results on the location of Lee-Yang zeros of the anti-ferromagnetic Ising model. We show further that our methods extend to the case when weak spatial mixing on the Bethe lattice is not known to be equivalent to strong spatial mixing on all graphs. In particular, we show that results on strong spatial mixing in the anti-ferromagnetic Potts model can be lifted to the complex plane to give new zero-freeness results for the associated partition function. This extension allows us to give the first deterministic FPTAS for counting the number of $q$-colorings of a graph of maximum degree $\Delta$ provided only that $q\ge 2\Delta$. This matches the natural bound for randomized algorithms obtained by a straightforward application of Markov chain Monte Carlo. We also give an improved version of this result for triangle-free graphs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.