Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

On the complexity of classes of uncountable structures: trees on $\aleph_1$ (1906.00849v1)

Published 3 Jun 2019 in math.LO

Abstract: We analyse the complexity of the class of (special) Aronszajn, Suslin and Kurepa trees in the projective hierarchy of the higher Baire-space $\omega_1{\omega_1}$. First, we will show that none of these classes have the Baire property (unless they are empty). Moreover, under $(V=L)$, (a) the class of Aronszajn and Suslin trees is $\Pi_11$-complete, (b) the class of special Aronszajn trees is $\Sigma_11$-complete, and (c) the class of Kurepa trees is $\Pi1_2$-complete. We achieve these results by finding nicely definable reductions that map subsets $X$ of $\omega_1$ to trees $T_X$ so that $T_X$ is in a given tree-class $\mathcal T$ if and only if $X$ is stationary/non-stationary (depending on the class $\mathcal T$). Finally, we present models of CH where these classes have lower projective complexity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.