Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences modulo powers of 11 for some eta-quotients (1906.00428v1)

Published 2 Jun 2019 in math.NT

Abstract: The partition function $ p_{[1c11d]}(n)$ can be defined using the generating function, [\sum_{n=0}{\infty}p_{[1c{11}d]}(n)qn=\prod_{n=1}{\infty}\dfrac{1}{(1-qn)c(1-q{11 n})d}.] In this paper, we prove infinite families of congruences for the partition function $ p_{[1c11d]}(n)$ modulo powers of $11$ for any integers $c$ and $d$, which generalizes Atkin and Gordon's congruences for powers of the partition function. The proofs use an explicit basis for the vector space of modular functions of the congruence subgroup $\Gamma_0(11)$.

Summary

We haven't generated a summary for this paper yet.