Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New non-linearity parameters of Boolean functions (1906.00426v1)

Published 2 Jun 2019 in cs.CR, cs.IT, and math.IT

Abstract: The study of non-linearity (linearity) of Boolean function was initiated by Rothaus in 1976. The classical non-linearity of a Boolean function is the minimum Hamming distance of its truth table to that of affine functions. In this note we introduce new "multidimensional" non-linearity parameters $(N_f,H_f)$ for conventional and vectorial Boolean functions $f$ with $m$ coordinates in $n$ variables. The classical non-linearity may be treated as a 1-dimensional parameter in the new definition. $r$-dimensional parameters for $r\geq 2$ are relevant to possible multidimensional extensions of the Fast Correlation Attack in stream ciphers and Linear Cryptanalysis in block ciphers. Besides we introduce a notion of optimal vectorial Boolean functions relevant to the new parameters. For $r=1$ and even $n\geq 2m$ optimal Boolean functions are exactly perfect nonlinear functions (generalizations of Rothaus' bent functions) defined by Nyberg in 1991. By a computer search we find that this property holds for $r=2, m=1, n=4$ too. That is an open problem for larger $n,m$ and $r\geq 2$. The definitions may be easily extended to $q$-ary functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.