Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Deconditional Kernel Mean Embeddings (1906.00199v1)

Published 1 Jun 2019 in stat.ML and cs.LG

Abstract: Conditional kernel mean embeddings form an attractive nonparametric framework for representing conditional means of functions, describing the observation processes for many complex models. However, the recovery of the original underlying function of interest whose conditional mean was observed is a challenging inference task. We formalize deconditional kernel mean embeddings as a solution to this inverse problem, and show that it can be naturally viewed as a nonparametric Bayes' rule. Critically, we introduce the notion of task transformed Gaussian processes and establish deconditional kernel means as their posterior predictive mean. This connection provides Bayesian interpretations and uncertainty estimates for deconditional kernel mean embeddings, explains their regularization hyperparameters, and reveals a marginal likelihood for kernel hyperparameter learning. These revelations further enable practical applications such as likelihood-free inference and learning sparse representations for big data.

Citations (9)

Summary

We haven't generated a summary for this paper yet.