Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recent Advances in Imitation Learning from Observation (1905.13566v2)

Published 30 May 2019 in cs.RO, cs.AI, and cs.LG

Abstract: Imitation learning is the process by which one agent tries to learn how to perform a certain task using information generated by another, often more-expert agent performing that same task. Conventionally, the imitator has access to both state and action information generated by an expert performing the task (e.g., the expert may provide a kinesthetic demonstration of object placement using a robotic arm). However, requiring the action information prevents imitation learning from a large number of existing valuable learning resources such as online videos of humans performing tasks. To overcome this issue, the specific problem of imitation from observation (IfO) has recently garnered a great deal of attention, in which the imitator only has access to the state information (e.g., video frames) generated by the expert. In this paper, we provide a literature review of methods developed for IfO, and then point out some open research problems and potential future work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Faraz Torabi (11 papers)
  2. Garrett Warnell (47 papers)
  3. Peter Stone (184 papers)
Citations (148)

Summary

We haven't generated a summary for this paper yet.