Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Markov Logic Networks (1905.13462v3)

Published 31 May 2019 in cs.LG and stat.ML

Abstract: We introduce neural Markov logic networks (NMLNs), a statistical relational learning system that borrows ideas from Markov logic. Like Markov logic networks (MLNs), NMLNs are an exponential-family model for modelling distributions over possible worlds, but unlike MLNs, they do not rely on explicitly specified first-order logic rules. Instead, NMLNs learn an implicit representation of such rules as a neural network that acts as a potential function on fragments of the relational structure. Similarly to many neural symbolic methods, NMLNs can exploit embeddings of constants but, unlike them, NMLNs work well also in their absence. This is extremely important for predicting in settings other than the transductive one. We showcase the potential of NMLNs on knowledge-base completion, triple classification and on generation of molecular (graph) data.

Citations (38)

Summary

We haven't generated a summary for this paper yet.