Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting and Segmenting Sorghum Heads (1905.13291v1)

Published 30 May 2019 in cs.CV and cs.LG

Abstract: Phenotyping is the process of measuring an organism's observable traits. Manual phenotyping of crops is a labor-intensive, time-consuming, costly, and error prone process. Accurate, automated, high-throughput phenotyping can relieve a huge burden in the crop breeding pipeline. In this paper, we propose a scalable, high-throughput approach to automatically count and segment panicles (heads), a key phenotype, from aerial sorghum crop imagery. Our counting approach uses the image density map obtained from dot or region annotation as the target with a novel deep convolutional neural network architecture. We also propose a novel instance segmentation algorithm using the estimated density map, to identify the individual panicles in the presence of occlusion. With real Sorghum aerial images, we obtain a mean absolute error (MAE) of 1.06 for counting which is better than using well-known crowd counting approaches such as CCNN, MCNN and CSRNet models. The instance segmentation model also produces respectable results which will be ultimately useful in reducing the manual annotation workload for future data.

Citations (15)

Summary

We haven't generated a summary for this paper yet.