Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Generalization via Universal Non-volume Preserving Models (1905.13040v2)

Published 28 May 2019 in cs.CV

Abstract: Recognition across domains has recently become an active topic in the research community. However, it has been largely overlooked in the problem of recognition in new unseen domains. Under this condition, the delivered deep network models are unable to be updated, adapted, or fine-tuned. Therefore, recent deep learning techniques, such as domain adaptation, feature transferring, and fine-tuning, cannot be applied. This paper presents a novel approach to the problem of domain generalization in the context of deep learning. The proposed method is evaluated on different datasets in various problems, i.e. (i) digit recognition on MNIST, SVHN, and MNIST-M, (ii) face recognition on Extended Yale-B, CMU-PIE and CMU-MPIE, and (iii) pedestrian recognition on RGB and Thermal image datasets. The experimental results show that our proposed method consistently improves performance accuracy. It can also be easily incorporated with any other CNN frameworks within an end-to-end deep network design for object detection and recognition problems to improve their performance.

Summary

We haven't generated a summary for this paper yet.