Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Joint eigenfunctions for the relativistic Calogero-Moser Hamiltonians of hyperbolic type. III. Factorized asymptotics (1905.12918v1)

Published 30 May 2019 in math-ph, math.CA, math.MP, math.QA, and nlin.SI

Abstract: In the two preceding parts of this series of papers, we introduced and studied a recursion scheme for constructing joint eigenfunctions $J_N(a_+, a_-,b;x,y)$ of the Hamiltonians arising in the integrable $N$-particle systems of hyperbolic relativistic Calogero-Moser type. We focused on the first steps of the scheme in Part I, and on the cases $N=2$ and $N=3$ in Part II. In this paper, we determine the dominant asymptotics of a similarity transformed function $\rE_N(b;x,y)$ for $y_j-y_{j+1}\to\infty$, $j=1,\ldots, N-1$, and thereby confirm the long standing conjecture that the particles in the hyperbolic relativistic Calogero-Moser system exhibit soliton scattering. This result generalizes a main result in Part II to all particle numbers $N>3$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.