Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Learning Network: A Structure Learning Algorithm (1905.12665v3)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: Recently, graph neural networks (GNNs) have proved to be suitable in tasks on unstructured data. Particularly in tasks as community detection, node classification, and link prediction. However, most GNN models still operate with static relationships. We propose the Graph Learning Network (GLN), a simple yet effective process to learn node embeddings and structure prediction functions. Our model uses graph convolutions to propose expected node features, and predict the best structure based on them. We repeat these steps recursively to enhance the prediction and the embeddings.

Citations (15)

Summary

We haven't generated a summary for this paper yet.