Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Prospects of reinforcement learning for the simultaneous damping of many mechanical modes (1905.12344v2)

Published 29 May 2019 in quant-ph and physics.optics

Abstract: We apply adaptive feedback for the partial refrigeration of a mechanical resonator, i.e. with the aim to simultaneously cool the classical thermal motion of more than one vibrational degree of freedom. The feedback is obtained from a neural network parametrized policy trained via a reinforcement learning strategy to choose the correct sequence of actions from a finite set in order to simultaneously reduce the energy of many modes of vibration. The actions are realized either as optical modulations of the spring constants in the so-called quadratic optomechanical coupling regime or as radiation pressure induced momentum kicks in the linear coupling regime. As a proof of principle we numerically illustrate efficient simultaneous cooling of four independent modes with an overall strong reduction of the total system temperature.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.