Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

KG-GAN: Knowledge-Guided Generative Adversarial Networks (1905.12261v2)

Published 29 May 2019 in cs.CV

Abstract: Can generative adversarial networks (GANs) generate roses of various colors given only roses of red petals as input? The answer is negative, since GANs' discriminator would reject all roses of unseen petal colors. In this study, we propose knowledge-guided GAN (KG-GAN) to fuse domain knowledge with the GAN framework. KG-GAN trains two generators; one learns from data whereas the other learns from knowledge with a constraint function. Experimental results demonstrate the effectiveness of KG-GAN in generating unseen flower categories from seen categories given textual descriptions of the unseen ones.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.